ENVIRONMENTAL PRODUCT DECLARATION

IN ACCORDANCE WITH EN 15804+A2 & ISO 14021 / ISO 21930

LED Power Driver 100u 24V 120V-277V

GENERAL INFORMATION

MANUFACTURER

Manufacturer	Signify
Address	5600 VB Eindhoven, The Netherlands
Contact details	led.elec.sustainability@signify.com
Website	https://www.signify.com/global

EPD STANDARDS, SCOPE AND VERIFICATION

Reference standard	EN 15804+A2:2019 and ISO 14021
Sector	Electrical product
Category of EPD	Self-declared EPD
Scope of the EPD	Cradle to gate with options, A4-B7, and modules C1-C4, D
EPD author	Sustainability Signify
EPD verification	Independent verification of this EPD and data, according to ISO 14021: ☑ Internal certification □External verification

The manufacturer has the sole ownership, liability, and responsibility for the EPD. EPDs within the same product category but from different programs may not be comparable. EPDs of lighting products may not be comparable if they do not comply with EN 15804 and if they are not compared in a lighting context.

PRODUCT

LED Davis and Datis and 100s 24V/120V/
LED Power Driver 100u 24V 120V- 277V
Not applicable
929003931306 See annex in case other products are covered under this EPD.
TAIWAN
2024
No averaging
Not applicable

ENVIRONMENTAL DATA SUMMARY

	Declared unit	1 unit
ı	Declared unit mass	0.575 kg
	GWP-fossil, A1-A3 (kgCO2e)	6.82E+00
	GWP-total, A1-A3 (kgCO2e)	6.75E+00
5	Secondary material, inputs (%)	14.3
5	Secondary material, outputs (%)	31.1
-	Total energy use, A1-A3 (kWh)	27.3
ı	Net fresh water use, A1-A3 (m3e)	0.08

PRODUCT AND MANUFACTURER

ABOUT THE MANUFACTURER

Signify is the world leader in lighting for professionals, consumers and lighting for the Internet of Things. Our energy efficient lighting products, systems and services enable our customers to enjoy a superior quality of light, and make people's lives safer and more comfortable, businesses more productive and cities more liveable.

For more information, please visit: https://www.signify.com/global

PRODUCT DESCRIPTION

Philips full-electronic constant voltage LED Power drivers are designed to operate 24VDC LED solutions used in general built-in applications such as refrigerated display lighting, retail display lighting and linear accent lighting. They are specifically designed to ensure the highest performance with maximum robustness combined with a long lifetime.

PRODUCT RAW MATERIAL MAIN COMPOSITION

Raw material category	Amount, mass- %	Material origin
Metals	41.83	APAC, EU
Minerals	41.24	APAC
Fossil materials	16.79	APAC, EU
Bio-based materials	0.13	APAC

BIOGENIC CARBON CONTENT

Product's biogenic carbon content at the factory gate

Biogenic carbon content in product, kg C	0
Biogenic carbon content in packaging, kg C	0.014

FUNCTIONAL UNIT AND SERVICE LIFE

Declared unit	1 Unit
Mass per declared unit	0.575 kg
Functional unit	over 50000 hours
Reference service life	50000 hours

SUBSTANCES, REACH - VERY HIGH CONCERN

For information about REACH SVHC substances please visit the website:

REACH | Signify Company Website

PRODUCT LIFE-CYCLE

SYSTEM BOUNDARY

This EPD covers the life-cycle modules listed in the following table.

	rodu stage			mbly ige			U	se stag	е			End	d of li	fe sta	ge	Beyond the system boundaries					
A1	A2	А3	A4	A5	B1	B2	В3	B4	B5	В6	B7	C1	C2	C3	C4		D				
x	x	x	х	х	MNR	MNR	MNR	MNR	MNR	х	MNR	MNR	х	x	х	х					
Raw materials	Transport	Manufacturing	Transport	Assembly	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstr./demol.	Transport	Waste processing	Disposal	Reuse	Recovery	Recycling			

Modules not relevant = MNR.

MANUFACTURING AND PACKAGING (A1-A3) VP-018

The environmental impacts considered for the product stage cover the manufacturing of raw materials used in the production as well as packaging materials and other ancillary materials. Also, electricity, and waste formed in the production processes at Signify's manufacturing facilities are included in this stage.

The product is made of metals, plastics, and electronic components. All components are transported to the production facility, where the main manufacturing processes primarily are associated with assembly. The finished product can be packaged with polyethylene, cardboard, and/or paper as packaging material before shipment to customers. Manufacturing loss, ancillaries and wastes are calculated according to the data that each manufacturing site is sharing with Signify. The total annual amount of waste in kg is allocated to the total annual production in kg at the specific manufacturing site responsible to produce the studied product. Thus, it is possible to allocate it according to the weight of the product analysed in this study. Some of the wastes are due to ancillary materials used during manufacturing while the rest is due to material losses.

TRANSPORT AND INSTALLATION (A4-A5)

Transport distances were calculated on the base of the supplier location and manufacturing location and then made a cumulative group choosing the conservative scenario. Environmental impacts from installation include waste packaging materials (A5). The impacts of energy consumption and the used ancillary materials during installation are considered negligible.

PRODUCT USE AND MAINTENANCE (B1-B7)

During the use phase, the product consumes electricity from EU's electricity grid mix (B6). The total power consumption of the reference product is calculated as follows: Wattage x Reference lifetime = kWh consumed throughout the entire use phase B6.

PRODUCT END OF LIFE (C1-C4, D)

Consumption of energy and natural resources in demolition process is assumed to be negligible. It is assumed that the waste is collected separately and transported to the waste treatment centre. Transportation distance to treatment is assumed as 150 km and the transportation method is assumed to be lorry (C2). According to EN 50693:2019, the sequence of treatment operations occurring to the product shall include de-pollution, fractions separation and preparation (dismantling, crushing, shredding, sorting), recycling, other material recovery, energy recovery and disposal. In this study, the default values from table G.4 of EN 50693 is used for treating materials in different waste treatment methods. Due to the material and energy recovery potential of parts in the lighting system, the end-of-life product is converted into recycled raw materials, while the energy recovered from incineration displaces electricity and heat production (D). The benefits and loads of incineration and recycling are included in Module D.

SYSTEM BOUNDARY

Material, Energy and Water Input **A5 A1 A3 B6** C1 - C4 Installation/ **Raw materials** Manufacturing **End of Life** Use **Benefits Assembly** A4 A2 System boundary Transport Transport Treatment of Electricity Energy Recycling Reuse product packaging Raw materials and waste components Water Recovery Incineration Packaging of raw Waste Landfill Recycling materials **Environmental emissions**

LIFE-CYCLE ASSESSMENT

CUT-OFF CRITERIA

The study does not exclude any modules or processes which are stated mandatory in the reference standard and the applied PCR. The study does not exclude any hazardous materials or substances. The study includes all major raw material and energy consumption. All inputs and outputs of the unit processes, for which data is available for, are included in the calculation. There is no neglected unit process more than 1% of total mass or energy flows. The module specific total neglected input and output flows also do not exceed 5% of energy usage or mass.

ALLOCATION, ESTIMATES AND ASSUMPTIONS

Allocation is required if some material, energy, and waste data cannot be measured separately for the product under investigation. All allocations are done as per the reference standards and the applied PCR. In this study, ancillary materials, energy & water consumption, material loss and waste generation at the manufacturing site are attributed to the bill of materials of the products, therefore, they are allocated by partitioning the quantities on the base of the total production in kg throughout the year. Thus, allocation has been done in the following ways:

Data type	Allocation
Raw materials	No allocation
Packaging materials	No allocation
Ancillary materials	Allocated by mass or volume
Manufacturing energy and waste	Allocated by mass or volume

This EPD is created with a most conservative scenario in A1-A3 in terms of material composition.

AVERAGES AND VARIABILITY

Type of average	No averaging
Averaging method	Not applicable
Variation in GWP-fossil for A1-A3	Not applicable

This EPD is product and factory specific and does not contain average calculations. It is created with a most conservative scenario in A1-A3 in terms of material composition.

LCA SOFTWARE AND BIBLIOGRAPHY

This EPD has been created using One Click LCA EPD Generator. The LCA and EPD have been prepared according to the reference standards and ISO 14040/14044. EcoInvent 3.10.1 database was used as the source of environmental data.

ENVIRONMENTAL IMPACT DATA

CORE ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
GWP – total ¹⁾	kg CO₂e	6.09E+00	1.33E-01	5.33E-01	6.75E+00	1.54E-01	9.49E-02	MNR	MNR	MNR	MNR	MNR	1.64E+02	MNR	MNR	9.42E-03	4.41E-02	1.14E-01	-2.56E-01
GWP – fossil	kg CO₂e	6.10E+00	1.33E-01	5.81E-01	6.82E+00	1.54E-01	4.52E-02	MNR	MNR	MNR	MNR	MNR	1.64E+02	MNR	MNR	9.42E-03	4.41E-02	7.07E-02	-2.55E-01
GWP – biogenic	kg CO₂e	-2.81E-02	0.00E+00	-4.97E-02	-7.78E-02	0.00E+00	4.97E-02	MNR	MNR	MNR	MNR	MNR	0.00E+00	MNR	MNR	0.00E+00	0.00E+00	4.30E-02	-9.30E-04
GWP – LULUC	kg CO₂e	1.35E-02	5.96E-05	1.22E-03	1.48E-02	8.00E-05	4.96E-07	MNR	MNR	MNR	MNR	MNR	5.02E-01	MNR	MNR	4.21E-06	7.34E-06	2.19E-05	-3.39E-04
Ozone depletion pot.	kg CFC-11e	1.58E-07	1.97E-09	6.47E-09	1.66E-07	2.22E-09	2.39E-11	MNR	MNR	MNR	MNR	MNR	3.02E-06	MNR	MNR	1.39E-10	6.79E-11	2.69E-10	-1.92E-09
Acidification potential	mol H⁺e	8.27E-02	4.55E-04	3.16E-03	8.64E-02	3.65E-03	1.80E-05	MNR	MNR	MNR	MNR	MNR	9.62E-01	MNR	MNR	3.21E-05	6.10E-05	1.59E-04	-1.96E-02
EP-freshwater ²⁾	kg Pe	6.72E-03	1.04E-05	1.29E-04	6.86E-03	6.37E-06	2.09E-07	MNR	MNR	MNR	MNR	MNR	1.52E-01	MNR	MNR	7.33E-07	2.94E-06	1.33E-04	-1.09E-03
EP-marine	kg Ne	8.99E-03	1.49E-04	4.98E-04	9.64E-03	9.18E-04	1.05E-05	MNR	MNR	MNR	MNR	MNR	1.51E-01	MNR	MNR	1.06E-05	1.65E-05	1.97E-04	-8.55E-04
EP-terrestrial	mol Ne	1.30E-01	1.63E-03	4.52E-03	1.37E-01	1.02E-02	8.77E-05	MNR	MNR	MNR	MNR	MNR	1.35E+00	MNR	MNR	1.15E-04	1.71E-04	5.52E-04	-1.20E-02
POCP ("smog")3)	kg NMVOCe	3.55E-02	6.70E-04	1.68E-03	3.79E-02	2.82E-03	2.20E-05	MNR	MNR	MNR	MNR	MNR	4.45E-01	MNR	MNR	4.73E-05	4.84E-05	1.64E-04	-3.52E-03
ADP-minerals & metals ⁴⁾	kg Sbe	1.55E-03	3.72E-07	7.66E-07	1.55E-03	2.10E-07	4.41E-09	MNR	MNR	MNR	MNR	MNR	2.21E-03	MNR	MNR	2.63E-08	2.69E-07	1.91E-07	-3.52E-04
ADP-fossil resources	MJ	8.19E+01	1.93E+00	7.82E+00	9.17E+01	1.96E+00	1.43E-02	MNR	MNR	MNR	MNR	MNR	3.81E+03	MNR	MNR	1.37E-01	7.15E-02	3.07E-01	-2.96E+00
Water use ⁵⁾	m³e depr.	2.69E+00	9.55E-03	3.75E+00	6.46E+00	6.49E-03	3.31E-03	MNR	MNR	MNR	MNR	MNR	1.04E+02	MNR	MNR	6.75E-04	3.61E-03	5.48E-03	-1.25E-01

¹⁾ GWP = Global Warming Potential; 2) EP = Eutrophication potential. Required characterisation method and data are in kg P-eq. Multiply by 3,07 to get PO4e; 3) POCP = Photochemical ozone formation; 4) ADP = Abiotic depletion potential; 5) EN 15804+A2 disclaimer for Abiotic depletion and Water use and optional indicators except Particulate matter and Ionizing radiation, human health. The results of these environmental impact indicators shall be used with care as the uncertainties on these results are high or as there is limited experience with the indicator.

ADDITIONAL (OPTIONAL) ENVIRONMENTAL IMPACT INDICATORS - EN 15804+A2, PEF

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Particulate matter	Incidence	4.89E-07	1.33E-08	1.37E-08	5.16E-07	6.89E-09	1.29E-10	MNR	MNR	MNR	MNR	MNR	3.43E-06	MNR	MNR	9.43E-10	7.74E-10	2.04E-09	-4.09E-08
Ionizing radiation ⁶⁾	kBq U235e	6.15E-01	1.68E-03	1.45E-02	6.31E-01	1.08E-03	2.11E-05	MNR	MNR	MNR	MNR	MNR	1.05E+02	MNR	MNR	1.19E-04	3.24E-04	5.14E-04	-2.23E-02
Ecotoxicity (freshwater)	CTUe	1.30E+02	2.74E-01	1.72E+00	1.32E+02	1.77E-01	8.25E-02	MNR	MNR	MNR	MNR	MNR	5.80E+02	MNR	MNR	1.93E-02	1.11E-01	9.50E-01	-1.70E+01
Human toxicity, cancer	CTUh	7.26E-09	2.20E-11	1.15E-10	7.39E-09	3.10E-11	4.36E-12	MNR	MNR	MNR	MNR	MNR	5.53E-08	MNR	MNR	1.55E-12	7.40E-12	5.86E-11	-2.62E-09
Human tox. non-cancer	CTUh	4.25E-07	1.25E-09	3.67E-09	4.30E-07	6.71E-10	2.42E-10	MNR	MNR	MNR	MNR	MNR	2.87E-06	MNR	MNR	8.85E-11	3.70E-10	1.56E-09	-2.70E-07
SQP ⁷⁾	-	3.88E+01	1.95E+00	3.16E+00	4.39E+01	6.00E-01	3.78E-03	MNR	MNR	MNR	MNR	MNR	8.47E+02	MNR	MNR	1.38E-01	1.05E-01	3.34E-01	-6.97E+00

⁶⁾ EN 15804+A2 disclaimer for Ionizing radiation, human health. This impact category deals mainly with the eventual impact of low dose ionizing radiation on human health of the nuclear fuel cycle. It does not consider effects due to possible nuclear accidents, occupational exposure nor due to radioactive waste disposal in underground facilities. Potential ionizing radiation from the soil, from radon and from some construction materials is also not measured by this indicator; 7) SQP = Land use related impacts/soil quality.

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	В5	В6	В7	C1	C2	СЗ	C4	D
Renew. PER as energy ⁸⁾	MJ	1.07E+01	2.65E-02	-1.80E-01	1.05E+01	1.79E-02	-6.11E-01	MNR	MNR	MNR	MNR	MNR	1.04E+03	MNR	MNR	1.87E-03	1.01E-02	-6.31E-01	-5.33E-01
Renew. PER as material	MJ	1.08E+00	0.00E+00	4.39E-01	1.52E+00	0.00E+00	-4.39E-01	MNR	MNR	MNR	MNR	MNR	0.00E+00	MNR	MNR	0.00E+00	0.00E+00	-1.08E+00	1.99E-02
Total use of renew. PER	MJ	1.18E+01	2.65E-02	2.60E-01	1.21E+01	1.79E-02	-1.05E+00	MNR	MNR	MNR	MNR	MNR	1.04E+03	MNR	MNR	1.87E-03	1.01E-02	-1.71E+00	-5.13E-01
Non-re. PER as energy	MJ	7.92E+01	1.93E+00	6.40E+00	8.76E+01	1.96E+00	-4.75E-01	MNR	MNR	MNR	MNR	MNR	3.81E+03	MNR	MNR	1.37E-01	-5.30E-01	-2.54E+00	-2.96E+00
Non-re. PER as material	MJ	2.69E+00	0.00E+00	9.08E-01	3.60E+00	0.00E+00	-9.08E-01	MNR	MNR	MNR	MNR	MNR	0.00E+00	MNR	MNR	0.00E+00	-1.52E-01	-2.54E+00	1.18E-02
Total use of non-re. PER	MJ	8.19E+01	1.93E+00	7.31E+00	9.11E+01	1.96E+00	-1.38E+00	MNR	MNR	MNR	MNR	MNR	3.81E+03	MNR	MNR	1.37E-01	-6.82E-01	-5.07E+00	-2.95E+00
Secondary materials	kg	8.24E-02	8.23E-04	2.66E-02	1.10E-01	9.08E-04	2.07E-05	MNR	MNR	MNR	MNR	MNR	6.30E-01	MNR	MNR	5.82E-05	7.10E-05	2.60E-04	3.73E-02
Renew. secondary fuels	MJ	5.18E-03	1.05E-05	4.45E-03	9.64E-03	4.13E-06	2.29E-07	MNR	MNR	MNR	MNR	MNR	5.03E-03	MNR	MNR	7.39E-07	3.53E-06	2.39E-06	-1.33E-04
Non-ren. secondary fuels	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MNR	MNR	MNR	MNR	MNR	0.00E+00	MNR	MNR	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Use of net fresh water	m³	7.00E-02	2.86E-04	8.07E-03	7.84E-02	1.71E-04	4.80E-05	MNR	MNR	MNR	MNR	MNR	3.29E+00	MNR	MNR	2.02E-05	7.30E-05	-8.77E-05	-8.03E-03

8) PER = Primary energy resources.

END OF LIFE – WASTE

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	В3	B4	B5	В6	В7	C1	C2	С3	C4	D
Hazardous waste	kg	9.04E-01	3.28E-03	9.07E-03	9.16E-01	2.77E-03	9.96E-04	MNR	MNR	MNR	MNR	MNR	9.63E+00	MNR	MNR	2.32E-04	1.16E-03	2.58E-01	-9.63E-02
Non-hazardous waste	kg	2.79E+01	6.06E-02	7.86E-01	2.87E+01	4.14E-02	5.86E-02	MNR	MNR	MNR	MNR	MNR	7.45E+02	MNR	MNR	4.29E-03	3.16E-02	6.37E-01	-6.73E+00
Radioactive waste	kg	1.53E-04	4.12E-07	2.98E-06	1.57E-04	2.64E-07	5.34E-09	MNR	MNR	MNR	MNR	MNR	2.70E-02	MNR	MNR	2.91E-08	7.96E-08	1.28E-07	-5.77E-06

END OF LIFE – OUTPUT FLOWS

Impact category	Unit	A1	A2	A3	A1-A3	A4	A5	B1	B2	B3	B4	B5	В6	B7	C1	C2	C3	C4	D
Components for re-use	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MNR	MNR	MNR	MNR	MNR	0.00E+00	MNR	MNR	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Materials for recycling	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MNR	MNR	MNR	MNR	MNR	0.00E+00	MNR	MNR	0.00E+00	1.62E-01	0.00E+00	0.00E+00
Materials for energy rec	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	0.00E+00	MNR	MNR	MNR	MNR	MNR	0.00E+00	MNR	MNR	0.00E+00	1.63E-02	0.00E+00	0.00E+00
Exported energy	MJ	0.00E+00	0.00E+00	2.06E-01	2.06E-01	0.00E+00	0.00E+00	MNR	MNR	MNR	MNR	MNR	0.00E+00	MNR	MNR	0.00E+00	0.00E+00	0.00E+00	0.00E+00

ENVIRONMENTAL IMPACTS – EN 15804+A1, CML / ISO 21930

Impact category	Unit	A1	A2	А3	A1-A3	A4	A5	B1	B2	В3	B4	B5	B6	B7	C1	C2	C3	C4	D
Global Warming Pot.	kg CO₂e	6.09E+00	1.33E-01	5.84E-01	6.81E+00	1.53E-01	4.51E-02	MNR	MNR	MNR	MNR	MNR	1.64E+02	MNR	MNR	9.37E-03	4.41E-02	7.04E-02	-2.54E-01
Ozone depletion Pot.	kg CFC ₋₁₁ e	1.56E-07	1.57E-09	5.74E-09	1.63E-07	1.76E-09	2.08E-11	MNR	MNR	MNR	MNR	MNR	2.52E-06	MNR	MNR	1.11E-10	5.73E-11	2.17E-10	-1.66E-09
Acidification	kg SO₂e	6.80E-02	3.47E-04	2.68E-03	7.10E-02	2.91E-03	1.27E-05	MNR	MNR	MNR	MNR	MNR	8.20E-01	MNR	MNR	2.45E-05	4.83E-05	1.19E-04	-1.73E-02
Eutrophication	kg PO ₄ ³e	1.48E-02	8.46E-05	1.40E-03	1.63E-02	3.31E-04	4.78E-06	MNR	MNR	MNR	MNR	MNR	1.06E-01	MNR	MNR	5.98E-06	8.29E-06	3.65E-05	-6.61E-04
POCP ("smog")	kg C₂H₄e	5.95E-03	3.09E-05	1.54E-04	6.14E-03	1.48E-04	8.79E-07	MNR	MNR	MNR	MNR	MNR	4.47E-02	MNR	MNR	2.19E-06	2.93E-06	9.74E-06	-7.32E-04
ADP-elements	kg Sbe	1.55E-03	3.63E-07	7.53E-07	1.55E-03	2.06E-07	3.20E-09	MNR	MNR	MNR	MNR	MNR	2.20E-03	MNR	MNR	2.56E-08	2.67E-07	1.19E-07	-3.52E-04
ADP-fossil	MJ	7.22E+01	1.91E+00	7.68E+00	8.18E+01	1.94E+00	1.39E-02	MNR	MNR	MNR	MNR	MNR	1.95E+03	MNR	MNR	1.35E-01	6.65E-02	2.99E-01	-2.62E+00

ANNEX

MATERIAL COMPOSITION

The product's base materials and components are shown in the table below. The selected material groups in the table consist of materials with similar percentage of material or energy recovery in the disposal operation.

Material	Weight (g)	Weight-%
Aluminium	6.4	1.14
Copper	18.0	3.19
Other Plastics	31.57	5.6
Printing Paper	0.76	0.13
PCB Copper	31.15	5.53
PCB Iron	38.08	6.75
PCB Non-ferrous metal	0.05	0.01
PCB Support	61.88	10.98
PCB Tin	1.57	0.28
PP / PS-High Impact PS / ABS	1.2	0.21

Silica Sand	232.5	41.24
Steel	138.48	24.57
Tin	2.1	0.37

The products are compliant to the substance restrictions in the EU RoHS directive (2011/65/EU).

PRODUCTS COVERED UNDER THIS EPD

LED Power Driver 100u 24V 120V-277V 929003931306